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In [A.-K. Tornberg, B. Engquist, Numerical approximations of singular source terms in dif-
ferential equations, J. Comput. Phys. 200 (2004) 462–488], it was shown for simple exam-
ples that the then most common way to regularize delta functions in connection to level
set methods produces inconsistent approximations with errors that are not reduced with
grid refinement. Since then, several clever approximations have been derived to overcome
this problem. However, the great appeal of the old method was its simplicity. In this paper
it is shown that the old method – a one-dimensional delta function approximation
extended to higher dimensions by a distance function – can be made accurate with a dif-
ferent class of one-dimensional delta function approximations. The prize to pay is a wider
support of the resulting delta function approximations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The level set method, originally devised by Osher and Sethian [1], is a very popular method for the evolution of interfaces,
and it has been implemented for numerous applications. In some of these applications, the question of how to numerically
approximate a Dirac delta function arises. For example, in immiscible multiphase problems, Dirac delta functions supported
on interfaces separating different fluids are often used in the modeling of the surface tension forces acting on the interfaces.
Another example is the problem of evaluating a line integral in two dimensions or a surface integral in three dimensions.
This problem can conveniently be reformulated as an integral in 2D or 3D involving a Dirac delta function with support
on the line or surface. One approach to approximate such delta functions is to extend a regularized one-dimensional delta
function to higher dimensions using a distance function. This has been a common technique in connection to level set meth-
ods [2] since the distance function is usually available discretized on a computational grid. However, care is needed since the
extension to higher dimensions using a distance function may lead to Oð1Þ errors [3]. In [3], it was shown that another exten-
sion technique that is based on products of regularized one-dimensional delta functions [4] is consistent. This technique is
however only applicable when an explicit representation of the curve or the surface is available. In level set methods the
curve or the surface is represented implicitly by a level set [2,5].

To overcome the lack of consistency that became apparent with the work presented in [3], a number of consistent delta
function approximations that can be used with level set methods have been proposed. Engquist et al. [6] proposed two such
approximations. The first one is an approximation of the product rule using the distance function and its gradient. The sec-
ond one is based on the linear hat function but uses a variable regularization parameter. Smereka [7] derived a discrete delta
function obtained as the truncation error in solving the Laplacian of the Green’s function, which was proven to be second-
order accurate by Beale [8]. Consistent approximations for which the level set function and its gradient are needed have also
. All rights reserved.
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been introduced by Towers [9,10]. The advantage of these methods is that the supports of the delta function approximations
are very small. The discrete delta function proposed by Smereka has its support contained within a single mesh cell.

One way to explain the reason for the inconsistency shown in [3] is the following: The one-dimensional delta function
approximation is designed to obey certain moment conditions on a uniform grid. The first moment condition is the mass
condition that ensures that the delta function approximation sums to one independent of shifts in the grid. Delta function
approximations with compact support where the widths of the approximations are fixed to a number of cell widths was con-
sidered in [3]. As the one-dimensional delta function is extended to higher dimensions, using the closest distance to the line
or surface, the effective width in each coordinate direction relative to the grid size will depend on the slope of the curve or
surface. This will in general no longer be within the design of the one-dimensional delta approximation, causing a violation
of the mass condition, and hence an Oð1Þ error that will not vanish with grid refinement. This is further discussed in Section 3.
This effect was recognized by Engquist et al. [6] who introduced a first correction to this, by defining the regularization
parameter to depend on the gradient of the distance function.

The problem with extending the delta function to higher dimensions using the closest distance to the line or surface is
hence that the one-dimensional delta approximation is dilated, and that the moment conditions are no longer valid. One
can however construct delta approximations such that the moment conditions do hold for a wide range of dilations. These
functions are however not of compact support. One such function was given in [11]. It has compact support in Fourier space,
and decays rapidly enough in real space to lend itself to truncation, but the effective support will be wider than one or two
grid points as in the approximations above. In addition, in difference to the delta function approximations discussed above,
that are of low regularity, this function is infinitely differentiable.

In the analysis in [12], the error is split into two parts. The first part is the analytical error due to the approximation of the
delta function. The second part is the numerical error due to the approximation of the integral containing the delta function
approximation. For the first part, it is continuous moment conditions that are important, and for the second part, it is (in
addition to the order of the quadrature rule) the regularity of the delta function approximation that limits the accuracy. This
gives an upper limit of the error, but in the case when extending by the distance rule, the error is typically quite close to this
upper limit. The result from this analysis is that the numerical error is of order Oððh=eÞpÞ where p is determined by the reg-
ularity of the delta function approximation. For the compact one-dimensional delta function approximation, the regularity is
typically low. With a choice of e ¼ mh, which has been the common choice, the numerical error is of Oð1Þ, and the method is
inconsistent. Depending on the regularity and continuous moment order of the approximation, there is an optimal a < 1 in
e � ha that results in the best convergence. If we replace the narrow delta function approximation with an infinitely differ-
entiable delta function approximation, the result is quite different. The regularity of the delta function approximation will no
longer limit the accuracy of the quadrature rule. In fact, these functions can be considered as periodic functions, since they
decay to zero. For these functions, the trapezoidal rule on a uniform grid will converge faster than any power of h in the limit
as h! 0. This is often referred to as the superconvergence of the trapezoidal rule, and will yield a very small numerical error.

In this paper, we will consider three different functions that all have these properties. We will now provide a comparison
between one of the delta function approximations considered in this paper and the narrow linear hat function which in [3]
was shown to give Oð1Þ errors. Consider the computation of the arc-length of a circle of radius 1 centered at the origin by
evaluating
Z

X
deðdðC; xÞÞdX;
where the computational domain X is discretized with a regular mesh with mesh size h. Use the trapezoidal rule for the inte-
gration. For the narrow linear hat function
dL
2hðxÞ ¼

1
2h 1� jxj2h

� �
; if jxj 6 2h;

0; if jxj > 2h;

(
ð1Þ
there is no analytical error in the computation of the arc-length, see [12]. Still there is no convergence as h! 0:
h
 0.1
 0.05
 0.025
 0.0125
 0.00625

Relative error
 2:2� 10�3
 8� 10�4
 8� 10�4
 5� 10�4
 4� 10�4
Due to the symmetry of the problem and resulting cancellation of errors, these errors are quite small compared to the
errors in the examples given in Section 3. We use the same technique with the one-dimensional delta function
deðxÞ ¼ dFD

2hðxÞ defined as the derivative of the Fermi–Dirac function
dFD
2hðxÞ ¼ @x

1
1þ e�x=ð2hÞ : ð2Þ
This delta function approximation was used in the conservative level set method [13,14]. For this approximation, the er-
ror decreases exponentially down to the relative floating point error:
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What we see is the superconvergence of the trapezoidal rule for infinitely differentiable periodic functions.
This paper is organized as follows. In Section 2 we define delta function approximations and state conditions for accuracy

in one dimension. In Section 3 we discuss the simple example of computing the length of a line. We show why the compact
delta function approximations produce Oð1Þ errors and how large they are. We also show why this does not occur for approx-
imations with compact support in Fourier space. In Section 4 we introduce three different consistent delta function approx-
imations and discuss their properties. In Section 5 we state and prove theorems for the error in both two and three
dimensions. We present numerical experiments in Section 6 and summarize our results in Section 7.

2. Regularization

Given a continuous function uðnÞ, a delta function approximation can be constructed by
deðxÞ ¼
1
e
uðx=eÞ: ð3Þ
Examples of such uðnÞ functions with compact support are: the piecewise linear hat function
uLðnÞ ¼
ð1� jnjÞ; if jnj 6 1;
0; if jnj > 1;

�
ð4Þ
the cosine approximation
ucosðnÞ ¼
1
2 ð1þ cosðpnÞÞ; if jnj 6 1;
0; if jnj > 1;

(
ð5Þ
and the piecewise cubic function
uCðnÞ ¼
2� j2nj � 2j2nj2 þ j2nj3; if 0 6 jnj 6 1=2;

2� 11
3 j2nj þ 2j2nj2 � 1

3 j2nj3; if 1=2 < jnj 6 1;
0; if jnj > 1:

8><>: ð6Þ
The functions uLðnÞ;ucosðnÞ, and uCðnÞ are plotted in Fig. 1.
In the next section we state the conditions which the regularized one-dimensional delta function must satisfy in order to

be accurate.

2.1. Discrete regularization in one dimension

Assume a regular grid in one dimension, with grid size h and grid points xj ¼ jh; j 2 Z. We introduce the discrete moment
conditions:

Definition 2.1. A function de satisfies q discrete moment conditions if for all x� 2 R,
Mrðde; x�;hÞ ¼ h
X
j2Z

deðxj � x�Þðxj � x�Þr ¼
1; if r ¼ 0;
0; if 1 6 r < q;

�
ð7Þ
where xj ¼ jh; h > 0; j 2 Z.
2

function (c).
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If de satisfies q moment conditions, we say that it has a moment order q. The first moment condition ensures that the mass
of the delta function approximation de is one, independent of shifts in the grid. It is therefore referred to as the mass con-
dition. The higher moment conditions are important when the delta approximation is multiplied by a non-constant function.
The following theorem states that in one dimension the numerical accuracy of a regularized delta function is determined by
the number of discrete moment conditions.

Proposition 2.1. Assume de satisfies q discrete moment conditions and has compact support in ½�Mh;Mh�. Assume also that
f ðxÞ 2 CqðRÞ, and that all derivatives of f are bounded, then
E ¼ h
X

j

deðxj � x�Þf ðxjÞ � f ðx�Þ
�����

����� 6 Chq ð8Þ
and E ¼ 0 if f is constant.

A proof based on Taylor expansion of f around x� 2 R is found in Refs. [3,15]. The delta function approximations de in last
section have support in ½�e; e�. The linear hat function dL

2hðxÞ, the cosine approximation dcos
2h ðxÞ and the cubic function dC

2hðxÞ all
satisfy the mass condition and hence are consistent approximations. The cubic function dC

2hðxÞ is most accurate. It satisfies
four discrete moment conditions and is according to Proposition 2.1 a fourth-order accurate approximation.

2.2. Extensions to higher dimensions

A Dirac delta measure concentrated on a curve or surface can be approximated by extending a regularized one-dimen-
sional delta function to higher dimensions. Basically two techniques are used. One is the product formula and the other tech-
nique is based on a distance function to the curve or the surface.

Let C � Rd be a d� 1 dimensional closed, continuous, and bounded surface and let S be a parametrization of C. Define
dðC; g;xÞ as a delta function of variable strength supported on C such that
Z

Rd
dðC; g; xÞf ðxÞdx ¼

Z
C

gðSÞf ðXðSÞÞdS; ð9Þ
where x ¼ ðxð1Þ; . . . xðdÞÞ 2 Rd and XðSÞ ¼ ðXð1ÞðSÞ; . . . ;XðdÞðSÞÞ 2 C.
The product formula yields
deðC; g;xÞ ¼
Z

C

Yd

k¼1

dek
ðxðkÞ � XðkÞðSÞÞgðSÞdS; ð10Þ
where dek
is a one-dimensional regularized delta function.

Assume that the space Rd is covered by a regular grid
fxjgj2Zd ; xj ¼ xð1Þj1
; . . . ; xðdÞjd

� �
; xðkÞjk

¼ xðkÞ0 þ jkhk; jk 2 Z; k ¼ 1; . . . ;d: ð11Þ
The following theorem was proved by Tornberg and Engquist in Ref. [3].

Theorem 2.1. Suppose that de is a one-dimensional delta function approximation with compact support in ½�e; e�, that satisfies q
discrete moment conditions (see Definition 2.1); g 2 CrðRdÞ and f 2 CrðRdÞ; r P q. Then for any rectifiable curve C and deðC; g;xÞ
as defined in Eq. (10) with e ¼ ðmh1;mh2; . . . ;mhdÞ, it holds that
E ¼
Yd

k¼1

hk

 !X
j2Zd

deðC; g;xjÞf ðxjÞ �
Z

C
gðSÞf ðXðSÞÞdS

������
������ 6 Chq ð12Þ
with h ¼max16k6dhk and E ¼ 0 for constant f.

This means that the results from one dimension carry over to higher dimensions, and that it is still the discrete moment
order of the one-dimensional delta function approximation that determines the order of accuracy.

The product formula is easy to use when C is explicitly defined. However, in level set methods, C is defined implicitly by a
level set function /ðxÞ : Rd ! R,
C ¼ fx : /ðxÞ ¼ 0g: ð13Þ
It is therefore preferable to use this function to extend the regularized one-dimensional delta function de to higher dimen-
sions. In the case when /ðxÞ ¼ dðC;xÞ, a signed distance function to C, where the distance is the Euclidean distance from x to
C, the delta function approximation is defined as
deðC; g;xÞ ¼ ~gðxÞdeðdðC;xÞÞ; ð14Þ
where ~g is a smooth extension of g to Rd, such that ~gðXðSÞÞ ¼ gðSÞ. Using the level set function the integral in Eq. (9) can be
written as
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Z
Rd

f ðxÞdðC; g; xÞdx ¼
Z

Rd
f ðxÞ~gðxÞdð/ðxÞÞjr/ðxÞjdx: ð15Þ
Note that the extra scaling of jr/j is needed when / is not a distance function. In this paper we focus on the extension to
higher dimensions that employs the distance function.

3. Computing the length of a straight line

In this section we study the error made in the computation of the length of a straight line. In the computations a regu-
larized one-dimensional delta function de is extended to higher dimensions using a distance function, according to Eq. (14)
with ~g ¼ 1.

Consider the problem of calculating the length of a curve C:
jCj ¼ S ¼
Z

R2
dðC;xÞdx: ð16Þ
In the computation of jSj, a delta function approximation de on a regular grid is used:
Sh ¼ h2
X
j2Z2

deðdðC;xjÞÞ; xj ¼ ðxj1 ; yj2
Þ; xj1 ¼ j1h; yj2

¼ j2h; jl 2 Z; l ¼ 1;2: ð17Þ
In the following we will let the curve C 2 R2 be a straight line with slope k, but not a vertical line or a horizontal line. In
Ref. [3] it was shown that for C ¼ fx; xð2Þ ¼ xð1Þ;0 6 xð1Þ < S=

ffiffiffi
2
p
g, a line with slope k ¼ 1 and de being equal to the narrow

linear hat function dL
h the relative error jSh � Sj=S is more than 12% as h! 0. This was shown by dividing the sum Sh into

contributions of M subsegments of C, each of length
ffiffiffi
2
p

h. Here, we consider a different approach. We express the error in
terms of the first discrete moment of de (see Eq. (7) with r ¼ 0). We can then show which delta function approximations that
will produce Oð1Þ errors. For simplicity, we consider a line of infinite length so we do not have to worry about contributions
from end point terms.

From Eq. (3) we see that we can write deðxÞ as
deðxÞ ¼ gd~eðgxÞ; ~e ¼ ge: ð18Þ
We take
g ¼ 1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

q
; ð19Þ
where k is the slope of C as defined above. Using Eq. (18) the computed length of a straight line Sh (as given in Eq. (17)) is
Sh ¼ h
X
j22Z

h
X
j12Z

deðdðC; xj1 ; yj2
ÞÞ

 !
¼ h

X
j22Z

gh
X
j12Z

d~eðgdðC; xj1 ; yj2
ÞÞ

 !
: ð20Þ
It can be verified from Fig. 2 that gdðC; xj1 ; yj2
Þ ¼ xj1 � x�ðyj2

Þ where
x�ðyj2
Þ ¼ xn þ ph; 0 6 p < 1; n 2 Z ð21Þ
is the x-coordinate of C at y ¼ yj2
. Using the definition of the first discrete moment condition we can express Sh in terms of

the first moment of d~e in the x-direction:
Sh ¼ h
X
j22Z

gh
X
j12Z

d~eðxj1 � x�ðyj2
ÞÞ

 !
¼ gh

X
j22Z

M0ðd~e; x�ðyj2
Þ;hÞ: ð22Þ
For the linear hat function dL
e and the cosine approximation dcos

e with e ¼ mh we have from Ref. [11] that
M0 dL
mh; x

�; h
� �

¼ 1
m2 ðk0 þ k1 þ 1Þmþ ðk1 � k0 � 1Þp� k0ðk0 þ 1Þ

2
� k1ðk1 þ 1Þ

2

	 

ð23Þ
and
M0 dcos
mh ; x

�;h
� �

¼ k0 þ k1 þ 1
2m

þ sinððk0 þ k1 þ 1Þp=2mÞ cosðððk1 � k0Þ=2� pÞp=mÞ
2m sinðp=2mÞ ; ð24Þ
where
k0 ¼ bm� pc; k1 ¼ bmþ pc: ð25Þ
Here, bmc denotes m rounded to the nearest integer towards minus infinity. We recall from Section 2.1 that one-dimen-
sional delta function approximations are consistent if they fulfill the mass condition, i.e. M0ðdmh; x�;hÞ ¼ 1 for any shift in the
grid. The linear hat function with half width support e ¼ mh satisfies the mass condition when m is an integer. The cosine



Fig. 2. C is a straight line with slope k, g ¼ 1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
, and e ¼ 2h. In (a) k ¼ 1;g ¼

ffiffiffi
2
p

, and x� , defined in Eq. (21) is always a grid point, i.e. p ¼ 0. In (b)
k ¼ 2;g ¼

ffiffi
5
p

2 , and x� is either a grid point or lies in the middle of two grid points, i.e. p ¼ 0 and p ¼ 1=2 every second time.
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function with half width support e ¼ mh satisfies the mass condition when 2m is an integer. In this case, when C is a straight
line, the effective half width support is ge (see Fig. 2) and gm and 2gm, respectively, must be integers in order for the linear
hat function and the cosine function to be consistent approximations.

Using Eq. (22) together with the formulas (23) and (24) we can evaluate the error in the computation of the length of a
straight line with slope k using the linear hat function or the cosine approximation. The line in Fig. 2(a) has slope k ¼ 1 and it
intersects the grid points, hence ðx�ðyj2

Þ; yj2
Þ is always a grid point, i.e. p ¼ 0. Using the delta approximation de ¼ dL

h as in [3]
we get from Eqs. (22) and (23) with g ¼

ffiffiffi
2
p

;m ¼ g, and p ¼ 0
Sh ¼
1
2
ð3

ffiffiffi
2
p
� 2Þ

X
j22Z

ffiffiffi
2
p

h ¼ 1:1213
X
j22Z

ffiffiffi
2
p

h: ð26Þ
This indicates a relative error of over 12% independent of the mesh size h. This was also observed in [3]. With the delta
approximation de ¼ dcos

2h we get from Eqs. (22) and (24) with g ¼
ffiffiffi
2
p

;m ¼ 2g, and p ¼ 0
Sh ¼
1

2m
5þ sinð5p=ð2mÞÞ

sinðp=ð2mÞÞ

	 
X
j22Z

ffiffiffi
2
p

h � 1:0035
X
j22Z

ffiffiffi
2
p

h: ð27Þ
This shows that a relative error of 0.35% independent of the mesh size h is expected when the approximation dcos
2h is used.

The line in Fig. 2(b) has slope k ¼ 2 and it either intersect a grid point or lies in the middle of two grid points. Hence every
second time p ¼ 1=2 instead of p ¼ 0. Thus, using de ¼ dL

h Eqs. (22) and (23) with g ¼
ffiffi
5
p

2 ;m ¼ g and p ¼ 0; p ¼ 1=2 every sec-
ond time gives
Sh ¼
3
ffiffiffi
5
p
� 4

5
þ 2

ffiffiffi
5
p
� 2

5

 !X
j22Z

ffiffiffi
5
p

2
h � 1:0361

X
j22Z

ffiffiffi
5
p

2
h: ð28Þ
This results in a relative error of 3.61% independent of mesh size. For dcos
2h a relative error of around 0.013% is expected.
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3.1. Numerical validation

In order to validate the results of the previous subsection we consider C being two parallel lines of length L at a normal
distance 2a, joined at both ends by a half circle with radius a. The slope of the lines to the x-axis is k. The length of C is
S ¼ 2Lþ 2pa. Contours of the distance function dðC;xÞ when k ¼ 2 are shown in Fig. 3.

In Fig. 4(a) we show the relative error E ¼ jSh � Sj=S where Sh is computed according to Eq. (17) with de ¼ dcos
2h and k ¼ 1.

We can clearly see that there is no convergence as h! 0. Eq. (27) indicates that the relative error for the straight lines is
around 0.0035. We can see in the figure that this number is approached when the length of the straight lines is increased
and the radius of the half circles is decreased.

In Fig. 4(b) the slope of the parallel lines is 2 and de ¼ dL
h has been used in the computation. There is no convergence. Eq.

(28) indicates that the relative error for the straight lines is around 0.0361. We see in the figure that as the length of the
straight lines is increased or the radius of the half circles is decreased the relative error approaches this number.

3.2. Mass condition reformulated using a Fourier transform

By the use of Poisson’s summation formula
Fig. 3.
a ¼ 0:4
a
X
j2Z

uðajÞ ¼
X
j2Z

ûðj=aÞ; ð29Þ
the mass condition for a regularized delta function de ¼ 1
e uðx=eÞ with e ¼ mh can be related to the Fourier transform of the

function uðnÞ
ûðkÞ ¼
Z 1

�1
uðnÞe�2pikndn; ð30Þ
in the following way:
M0ðdmh; x�;hÞ ¼
1
m

X
j2Z

uððj� pÞ=mÞ ¼
X
j2Z

e�2pijpûðjmÞ: ð31Þ
The linear hat function, uLðnÞ, defined as in Eq. (4), has the Fourier transform
ûLðkÞ ¼ sin2ðpkÞ
p2k2 : ð32Þ
Thus, using Eq. (31) we have
M0ðdL
e; x
�; hÞ ¼ 1þ

X
j2Z;j – 0

e�2pijp sinðpmjÞ
pmj

	 
2

; ð33Þ
Here, we have used that ûLð0Þ ¼ 1. The second term in Eq. (33) is zero independent of any shift in the grid x� only when
sinðpmjÞ ¼ 0 for all j 2 Z; j – 0. Therefore the mass condition is satisfied only for integers m P 1. This result can also be ob-
tained using formula (23).
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2h is used. Circles: L ¼ 4, a ¼ 0:24
ffiffiffi
2
p

. Stars: L ¼ 6; a ¼ 0:12
ffiffiffi
2
p

. Squares: L ¼ 6; a ¼ 0:03
ffiffiffi
2
p

. The predicted
relative error for the length of lines is around 3:5 
 10�3. In (b) the slope of the parallel lines is k ¼ 2 and de ¼ dL

h is used. Circles: L ¼ 4; a ¼ 0:48=
ffiffiffi
5
p

. Stars:
L ¼ 6; a ¼ 0:12=

ffiffiffi
5
p

. Squares: L ¼ 6; a ¼ 0:06
ffiffiffi
2
p

. The predicted relative error for the length of lines is around 0.0361.
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The cosine approximation ucosðnÞ, defined in Eq. (5), has the Fourier transform
ûcosðkÞ ¼
sinð2pkÞ

2pk

� �
1

1�4k2 ; if k – 	 1=2;

1=2; if k ¼ 	1=2:

(
ð34Þ
By the same argument as above we have that the mass condition is satisfied only when sinð2pmjÞ ¼ 0 for all j 2 Z; j – 0
and m – 1=2. Therefore, the mass condition is satisfied when m P 1 and 2m is an integer.

In Eq. (22) we needed to evaluate M0ðd~e; x�;hÞ, where ~e ¼ gmh. From Poisson’s summation formula we have
M0ðd~e; x�; hÞ ¼
X
j2Z

e�2pijpûðjgmÞ: ð35Þ
Thus, in order to not have Oð1Þ errors in the computation of the length of a straight line, m in e ¼ mh must be chosen such
that gm P 1 is an integer when de ¼ dL

e and gm P 1, 2gm is an integer when de ¼ dcos
e .

Remark. The regularized one-dimensional delta functions were in this section extended using the distance function. If
instead a non-distance function /ðxÞ is used e must be chosen differently in order to avoid Oð1Þ errors. This is due to the fact
that /ðxÞ does not give the physical distance, and hence a different scaling is needed.

Assume that ûðkÞ has compact support on (�1, 1) and that ûð0Þ ¼ 1. Then, by Eq. (35), for all m P 1=g, the mass condi-
tion is satisfied. When /ðxÞ is a distance function we have that g P 1. This arises from the fact that the distance from C mea-
sured along a grid line is always larger or equal to the closest distance to C, which is given by the distance function, see Fig. 2.
When g P 1 then for all m P 1, there is no Oð1Þ error. If /ðxÞ is not a distance function and jr/j > 1, a harder restriction on
m is needed.

In the next section, we introduce a class of one-dimensional delta functions for which the ûðkÞ functions have compact
support. We will see that this type of delta function approximations will satisfy the discrete moment conditions for a wide
range of dilations.

4. Approximations with compact support in Fourier space

In the last section we saw that the linear hat function dL
e and the cosine approximation dcos

e with e ¼ mh are consistent
approximations in one dimension only for a discrete set of m-values. Therefore they can lead to inconsistent approximations
in higher dimensions. However, it is possible to construct delta function approximations that obey the mass condition for a
wide range of dilations. We start by stating a theorem

Theorem 4.1. Assume a regular grid in one dimension with grid points xj ¼ jh; j 2 Z and let x� ¼ xn þ ph where 0 6 p < 1 and
n 2 Z. Consider a delta function approximation de ¼ 1

e uðx=eÞ with e ¼ mh where
uðnÞ ¼
Z 1

�1
ûðkÞe2pikndk ð36Þ
and the Fourier transform of u
ûðkÞ ¼
Z 1

�1
uðnÞe�2pikndn: ð37Þ
If ûðkÞ has compact support on ð�b; bÞ and
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@rûðkÞ
@kr

����
k¼0
¼

1; for r ¼ 0;
0; for 1 6 r < q:

�
ð38Þ
Then for all m P b the delta function approximation de satisfies q discrete moment conditions.

The discrete moment conditions are important for the accuracy of the one-dimensional delta function approximation, see
Proposition 2.1. The conditions in Eq. (38) in the theorem are equivalent to the continuous moment conditions, i.e.
@rûðkÞ
@kr

����
k¼0
¼

1; for r ¼ 0;
0; for 1 6 r < q

�
()

Z 1

�1
uðxÞxrdx ¼

1; for r ¼ 0;
0; for 1 6 r < q:

�
ð39Þ
The continuous moment conditions will be important as we consider the analytical error in higher dimensions.
Proof of Theorem 4.1 There is no restriction in taking n ¼ 0, such that x� ¼ ph, with 0 6 p < 1. Let fr;eðxÞ ¼ 1

e uðx=eÞxr . We
have
Mrðde; x�;hÞ ¼ h
X
j2Z

deðxj � x�Þðxj � x�Þr ¼ h
X
j2Z

1
e
uððxj � x�Þ=eÞðxj � x�Þr ¼ h

X
j2Z

fr;eððj� pÞhÞ: ð40Þ
Since the Fourier transform of fr;eðxÞ is
f̂ r;eðkÞ ¼
1

ð�2piÞr
@r

@kr ûðekÞ ð41Þ
and the Fourier transform of fr;eðx� x�Þ is e�2pikx� f̂ r;eðkÞ we have from Poisson’s summation formula Eq. (29) that
Mrðde; x�;hÞ ¼
X
k2Z

e�2pikp 1
ð�2piÞr

@r

@kr ûðek=hÞ: ð42Þ
with e ¼ mh we get
Mrðde; x�;hÞ ¼
1

ð�2piÞr
@rûðmkÞ
@kr

����
k¼0
þ 1
ð�2piÞr

X
k2Z;k – 0

e�2pikp @
r

@kr ûðmkÞ: ð43Þ
If ûðkÞ has compact support in ð�b; bÞ the second term in the above equation vanishes for all m P b. Hence if the condi-
tion in Eq. (38) is satisfied for r ¼ 0;1; . . . ; q� 1 then de ¼ 1

e uðx=eÞ satisfies q discrete moment conditions. h

An example of a delta function approximation with the function ûðkÞ having compact support is the delta function intro-
duced in Ref. [11]
dTE
e ðxÞ ¼

1
e
uTEðx=eÞ ð44Þ
with
uTEðnÞ ¼
Z 1

�1
ûTEðkÞe2pikndk; ûTEðkÞ ¼ e

1
db2 e

1
dðk2�b2Þ if jkj < b;

0 if jkjP b;

(
ð45Þ
d ¼ 0:1 and b ¼ 1. Note that
ûTEð0Þ ¼ 1;
@ûTEðkÞ
@k

����
k¼0
¼ 0;

@2ûTEðkÞ
@k2

�����
k¼0

¼ �2
db4 – 0: ð46Þ
Hence from Theorem 4.1 we have that dTE
mhðxÞ is of moment order 2 for all m P 1. Thus, it is possible to construct one-

dimensional delta function approximations that obey the discrete moment conditions for a wide range of dilations. These
delta function approximations will not have compact support since they have compact support in Fourier space. However,
if an approximation is decaying rapidly it can in practice be truncated.

It is computationally demanding to evaluate the approximation from its Fourier transform. Therefore, we would like to
have an explicit expression for the approximation. In the following we give explicit expressions for two delta function
approximations which have Fourier transforms that decay rapidly. Theorem 4.1 can then be used to find m-values for which
dmhðxÞ satisfies the discrete moment conditions within a given error tolerance.

4.1. The derivative of the Fermi–Dirac function

Define a delta approximation as the derivative of the Fermi–Dirac or the sigmoid function
dFD
e ðxÞ ¼ @x

1
1þ e�x=e ¼

1
e

e�x=e

ð1þ e�x=eÞ2
: ð47Þ
Let then dFD
e ðxÞ ¼ 1

e u
FDðx=eÞ, where
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uFDðnÞ ¼ e�n

ð1þ e�nÞ2
: ð48Þ
The Fourier transform of uFDðnÞ is
ûFDðkÞ ¼ 1� 4pkI
X1
j¼1

ð�1Þj

jþ 2pik

 !
; ð49Þ
where I represents the imaginary part. This was obtained by differentiating the Fourier transform of the Fermi–Dirac func-
tion given in Ref. [16]. We have
ûFDð0Þ ¼ 1;
@rûFDðkÞ
@kr

����
k¼0
¼ 0 ð50Þ
for r odd. However, the second derivative
@2ûFDðkÞ
@k2

�����
k¼0

¼ 16p2
X1
j¼1

ð�1Þj

j2

 !
– 0: ð51Þ
Hence from Theorem 4.1 we have that dFD
mhðxÞ is of moment order 2 for all m P b provided that ûFDðkÞ has compact support

in ð�b; bÞ. Since ûFDðkÞ does not have compact support, as was the case for ûTEðkÞ we will always have a mass error but for
m ¼ 2 this error will be of order 10�16 which usually is the order of rounding errors. Therefore we consider ûFDðkÞ to have
compact support in (-2, 2) and thus by Theorem 4.1 dFD

mhðxÞ is of moment order 2 for all m P 2. In Fig. 5(b) (solid line) we can
see that for k ¼ 	1; ûFDðkÞ is of order 10�7. This implies that taking m ¼ 1 will typically give a mass error that is of order 10�7.

4.2. The Gaussian function

Another example of a function that has a Fourier transform that decays rapidly is the Gaussian function. The Fourier
transform of a Gaussian is another Gaussian. Let
uGðnÞ ¼
ffiffiffiffi
p
9

r
e�p2n2=9: ð52Þ
Then,
ûGðkÞ ¼ e�9k2
: ð53Þ
Also, for this function we have that
ûGð0Þ ¼ 1;
@rûGðkÞ
@kr

����
k¼0
¼ 0 ð54Þ
for all odd r but
@2ûGðkÞ
@k2

�����
k¼0

– 0: ð55Þ
Hence from Theorem 4.1 we have that dG
mhðxÞ is of moment order 2 for all m P b provided that ûGðkÞ has compact support

in ð�b; bÞ. Just as ûFDðkÞ, the function ûGðkÞ is never zero. Therefore, it does not, strictly speaking, have compact support.
However, since the function decreases exponentially to zero, it can in practice be regarded as zero whenever smaller than
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The functions uðnÞ (a) used to define the regularized delta functions deðxÞ ¼ 1
e uðx=eÞ, and their Fourier transforms ûðkÞ (b). Solid lines: uðnÞ ¼ uFDðnÞ

kÞ ¼ ûFDðkÞ. Dash–dotted lines: uðnÞ ¼ uGðnÞ and ûðkÞ ¼ ûGðkÞ.
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some tolerance. In Fig. 5(b) we see the function ûGðkÞ (dash–dotted line). For k ¼ 	1; ûGðkÞ is of order 10�5 and for k ¼ 	2 it
is of order 10�16 just as ûFDðkÞ. With an error tolerance of 10�16 we consider ûGðkÞ to be of moment order 2 for all m P 2. We
can see from Fig. 5(a) that the support of uGðnÞ is much smaller than uFDðnÞ. Since, in practical computations, a narrow sup-
port of uðnÞ is desired the Gaussian approximation seems to be preferable.

In the next section we state and prove theorems about the error when the distance function is used to extend the one-
dimensional delta approximations to higher dimensions.

5. Error analysis

Let X be the domain of integration. We assume throughout this section that the approximation deðdðC;xÞÞ has compact
support in
Xx ¼ fx : jdðC;xÞj 6 xg; ð56Þ
where dðC;xÞ is the signed distance function and x is small. We want to integrate
IC;F ¼
Z

X
dðdðC; xÞÞFðxÞdx: ð57Þ
The total error in the integration of the function dðdðC;xÞÞFðxÞ approximated by deðdðC;xÞÞFðxÞ is
Etot;FðdeÞ ¼
Z

X
dðdðC;xÞÞFðxÞdx� quadðdeðdðC;xÞÞFðxÞÞ; ð58Þ
where quad denotes the quadrature rule used to approximate the integral. The quadrature rule we consider is the trapezoidal
rule. We split the total error into two parts: the analytical error made when replacing the integrand with its approximation
Ex;FðdeÞ ¼
Z

Xx

dðdðC;xÞÞFðxÞdx�
Z

Xx

deðdðC; xÞÞFðxÞdx ð59Þ
and the numerical error made in the integration of this approximation using the trapezoidal rule
Equad;FðdeÞ ¼
Z

Xx

deðdðC;xÞÞFðxÞdx� quadðdeðdðC; xÞÞFðxÞÞ: ð60Þ
5.1. Analytical error

Definition 5.1. A function de with compact support in ½�x;x� satisfies a continuous moment conditions if
Z x

�x
deðtÞtrdt ¼

1; if r ¼ 0;
0; if 1 6 r < a:

�
ð61Þ
We now state two theorems for the analytical error. The first theorem provides an expression for the analytical error in
two dimensions, and the second theorem in three dimensions.

Theorem 5.1. Let de be a continuous function with support in ½�x;x�;x ¼ pe that satisfies a continuous moment conditions, see
Definition 5.1. Assume that C, the zero level set of dðC;xÞ, is a curve in R2 of class C2 that can be parametrized by
C ¼ ðxðsÞ; yðsÞÞ; x; y 2 C2½s1; s2� with the curvature jðsÞ defined by
jðsÞ ¼ x0ðsÞy00ðsÞ � x00ðsÞy0ðsÞ
qðsÞ3

; qðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðsÞ2 þ y0ðsÞ2

q
– 0: ð62Þ
Assume also that
x max
s
jjðsÞj < 1; ð63Þ
and that FðxÞ is a smooth function. Then, the analytical error for the integration of dðdðC;xÞÞFðxÞ made when replacing dðdðC;xÞÞ
by deðdðC;xÞÞ is given by
Ex;FðdeÞ ¼ �eaCa;F

Z p

�p
uðnÞnadnþ Oðeaþ1Þ; ð64Þ
with
Ca;F ¼
1
a!

Z s2

s1

qðsÞfatðs;0Þds� 1
ða� 1Þ!

Z s2

s1

qðsÞjðsÞfða�1Þtðs;0Þds: ð65Þ
A proof of this theorem for p ¼ 1 is given in Ref. [12] but a generalization is straightforward. The parametrization of
C ¼ ðxðsÞ; yðsÞÞ and the normal vector of the curve defined by
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n ¼ ð�y0ðsÞ; x0ðsÞÞ
qðsÞ ð66Þ
are used to parametrize the integration domain Xx. Introducing the parametrization Xðs; tÞ ¼ xðsÞ þ tn1ðsÞ;
Yðs; tÞ ¼ yðsÞ þ tn2ðsÞ. The integration can be performed over ½s1; s2� � ½�x;x� when the condition in Eq. (63) is fulfilled.
The function f in Eq. (65) is defined by
f ðs; tÞ ¼ FðXðs; tÞ; Yðs; tÞÞ: ð67Þ
Theorem 5.2. Let de be a continuous function with support in ½�x;x�;x ¼ pe that satisfies a continuous moment conditions, see
Definition 5.1. Assume that C, the zero level set of dðC;xÞ, is a 2-manifold in R3 of class C2. Suppose that
Pjðr; sÞ ¼ ðxðr; sÞ; yðr; sÞ; zðr; sÞÞ : ðr1; r2Þ � ðs1; s2Þ ! Vj is a coordinate patch on C of class C2 and C is covered by the disjoint
union of the open sets V1; . . . ;Vl and a set of measure zero in C. Let j1 and j2 be the principal curvatures of C on Vj. Assume also
that
x maxðmax
r;s
jj1ðr; sÞj;max

r;s
jj2ðr; sÞjÞ < 1; qðr; sÞ ¼ kPj

r � Pj
sk – 0; ð68Þ
and that FðxÞ is a smooth function. Then, the analytical error for the integration of dðdðC;xÞÞFðxÞ made when replacing dðdðC;xÞÞ
by deðdðC;xÞÞ is given by
Ex;FðdeÞ ¼ �ea
Z p

�p
uðnÞnadn

Xl

j¼1

Cj
a;F þ Oðeaþ1Þ; ð69Þ
with
Cj
1;F ¼

Z r2

r1

Z s2

s1

ftðr; s;0Þqðr; sÞdsdr �
Z r2

r1

Z s2

s1

f ðr; s; 0Þqðr; sÞðj1ðr; sÞ þ j2ðr; sÞÞdsdr ð70Þ
and for a P 2
Cj
a;F ¼

1
a!

Z r2

r1

Z s2

s1

qðr; sÞfatðr; s;0Þdsdr � 1
ða� 1Þ!

Z r2

r1

Z s2

s1

qðr; sÞðj1ðr; sÞ þ j2ðr; sÞÞfða�1Þtðr; s;0Þdsdr

þ 1
ða� 2Þ!

Z r2

r1

Z s2

s1

qðr; sÞðj1ðr; sÞj2ðr; sÞÞfða�2Þtðr; s; 0Þdsdr: ð71Þ
A proof can be found in the Appendix A. In order to perform the integration over Xx we parametrize this region using the
local parametrization of C and the normal vectors defined as
n ¼ ðn1; n2;n3Þ ¼ 1
qðr; sÞ ðP

j
r � Pj

sÞ: ð72Þ
Introducing the parametrization Xjðr; s; tÞ ¼ xðr; sÞ þ tn1ðr; sÞ;Yjðr; s; tÞ ¼ yðr; sÞ þ tn2ðr; sÞ, and Zjðr; s; tÞ ¼ zðr; sÞ þ tn3ðr; sÞ
we can cover the domain Xx by disjoint union of open sets M1; . . . ;Ml and a set of measure zero in Xx, where
Mj ¼ fðx; y; zÞ : x ¼ Xjðr; s; tÞ; y ¼ Yjðr; s; tÞ; z ¼ Zjðr; s; tÞ; r 2 ðr1; r2Þ; s 2 ðs1; s2Þ; t 2 ½�x;x�g: ð73Þ
The condition in Eq. (68) guarantees that this parametrization is non-singular. The integration can then be performed over
½r1; r2� � ½s1; s2� � ½�x;x�. For x small one can Taylor expand
f ðr; s; tÞ ¼ FðXjðr; s; tÞ; Yjðr; s; tÞ; Zjðr; s; tÞÞ ð74Þ
around ðr; s;0Þ and express the analytical error in terms of the continuous moments of the function de.
In the next section we analyze the numerical error made using the trapezoidal rule for integration.

5.2. Numerical error

The following theorem gives the error of the trapezoidal rule in one dimension.

Theorem 5.3. Let
xn ¼ aþ nh; n ¼ 0; . . . N; h ¼ b� a
N

ð75Þ
be a decomposition of the interval ½a; b� and Thða; b;h;wÞ be the trapezoidal sum
Thða; b;h;wÞ ¼ h
XN

n¼0

wnwðxnÞ; ð76Þ
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where
wn ¼
1=2; for n ¼ 0; and n ¼ N;

1; otherwise:

�
ð77Þ
Assume that wðxÞ 2 C2rþ2ða; bÞ. Then
Th �
Z b

a
wðxÞdx ¼ RTða; b;h;wðxÞÞ ð78Þ
with
RTða; b;h;wðxÞÞ ¼
Xr

k¼1

B2kh2k

ð2kÞ! w2k�1ðxÞ
���b
x¼a
þ R2rþ2ða; b;h;wÞ; ð79Þ
where Bj are the Bernoulli numbers and R2rþ2ða; b;h;wÞ is Oðh2rþ2Þ.

For a proof see Ref. [17, p. 298]. Note that when the function wðxÞ 2 C1 for x 2 R and w has ½a; b� as an interval of period-
icity, then
wðkÞðbÞ ¼ wðkÞðaÞ; k ¼ 0;1;2; . . . : ð80Þ
Hence,
jRTða; b; h;wÞj ¼ Oðh2rþ2Þ ð81Þ
for arbitrary r. Therefore, we have that for periodic infinite differentiable functions the trapezoidal error tends to zero faster
than any power of h, as h! 0. This is referred to as superconvergence. In Ref. [18] another proof is given. It is shown by using
the Poisson summation formula that the error
RT ¼ h
XN

n¼0

wnwðxnÞ �
Z b

a
wðxÞdx: ð82Þ
decreases as ŵð1=hÞ, with
ŵðkÞ ¼
Z 1

�1
wðxÞe�2pikxdx: ð83Þ
If w 2 Cr½R� and periodic, then ŵð1=hÞ ¼ OðhrÞ, as h! 0. Thus, for w 2 C1½R� the trapezoidal rule converges faster than any
power of h.

In higher dimensions we use the notion of a product rule. For simplicity we do the analysis here in two dimensions. The
analysis in three dimensions is similar. Let X ¼ ½a; b� � ½c; d�, and wðx; yÞ 2 C2rþ2ðXÞ. Introduce a uniform grid
xj ¼ aþ jhx; j ¼ 0; . . . M; hx ¼
b� a

M
; yn ¼ c þ nhy; n ¼ 0; . . . N; hy ¼

d� c
N

: ð84Þ
Denote by Q the quadrature scheme obtained by using the trapezoidal rule in both x and y directions with step size hx and
hy. We can write
I ¼
Z Z

X
wðx; yÞdxdy ¼

Z d

c
gðyÞdy; ð85Þ
where
gðyÞ ¼
Z b

a
wðx; yÞdx: ð86Þ
Using the trapezoidal rule to integrate in the y-variable (see, Eqs. (76) and (77)) gives
I ¼ hy

XN

n¼0

wn

Z b

a
wðx; ynÞdxþ RTðc; d;hy; gðyÞÞ; ð87Þ
where RT is the quadrature error. Using also the trapezoidal method in the x-direction with step size hx yields
I ¼ hy

XN

n¼0

wn hx

XM

j¼0

wjwðxj; ynÞ þ RTða; b;hx;wðx; ynÞÞ
 !

þ RTðc;d; hy; gðyÞÞ: ð88Þ
Simplifying the expression we get
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I ¼ hyhx

XN

n¼0

XM

j¼0

wnwjwðxj; ynÞ þ
XN

n¼0

hywnRTða; b;hx;wðx; ynÞÞ þ RT c;d;hy;

Z b

a
wðx; yÞdx

 !
: ð89Þ
Hence
I � hyhx

XN

n¼0

XM

j¼0

wnwjwðxj; ynÞ
�����

����� 6 ðd� cÞmax
yn

RTða; b;hx;wðx; ynÞÞj j þ ðb� aÞmax
x2½a;b�

RT c;d;hy;wðx; yÞ
� ��� ��; ð90Þ
and we see that the convergence results from one dimension extend to two dimensions. Thus, the superconvergence of the
trapezoidal rule also applies in two dimensions. We are now able to formulate the following theorem.

Theorem 5.4. Let X ¼ ½a; b� � ½c; d�, and Q be the quadrature scheme obtained by using the trapezoidal rule in both x and y
directions with step size hx and hy. Suppose de has compact support in ½�x;x� and Xx � X where
Xx ¼ fx : jdðC;xÞj 6 xg: ð91Þ
Suppose further that deðdðC;xÞÞFðxÞ 2 C1ðXÞ. Then the numerical error
EQ ;FðdeÞ ¼
Z

X
deðdðC;xÞÞFðxÞdx� QðdeðdðC;xÞÞFðxÞÞ

���� ���� ð92Þ
decreases faster than any power of h ¼ maxðhx;hyÞ.

When de has compact support in ½�x;x� the approximation deðdðC;xÞÞ has compact support in Xx. As long as
Xx � X; deðdðC;xÞÞ is a periodic function on X. Since the integrand is C1ðXÞ the superconvergence of the trapezoidal rule
gives the result of the theorem.

The same result also holds in three dimensions.

5.3. Practical considerations

The theorems in the previous section are applicable to delta function approximations with compact support in ½�x;x�.
The delta function approximations presented in Section 4 are infinitely differentiable and satisfy two moment conditions but
do not have compact support. In practice, we will truncate the delta function approximations presented in Section 4 and set
them to zero outside some ½�x;x� interval. This is motivated by the fact that the delta function approximations de in ques-
tion decay exponentially fast. The truncation results in an approximation error. In the following, we comment on the error
we make by truncating the tail of dFD

e and dG
e and discuss how the theorems in the previous section can be used.

Denote the truncated delta function approximation by
dx
e ðtÞ ¼

deðtÞ; for t in ½�x;x�;
0; otherwise;

�
ð93Þ
where deðtÞ is one of the one-dimensional delta function approximations presented in Section 4 and x is the half width sup-
port of the truncated delta function.

In two and three dimensions, we split the total error in the integration of the function dðdðC;xÞÞFðxÞ approximated by
dx
e ðdðC;xÞÞFðxÞ into two parts: the analytical error Ex;Fðdx

e Þ defined in Eq. (59) and the numerical error Equad;Fðdx
e Þ defined

in Eq. (60). The analytical error in two dimensions is given by Theorem 5.1 and in three dimensions by Theorem 5.2. This
error depends on the number of continuous moment conditions the delta function approximation satisfies. All the delta func-
tion approximations de in Section 4 satisfy two continuous moment conditions, see Eq. (39). By truncating these delta func-
tion approximations we make an approximation error and the continuous moment conditions are only satisfied to a certain
level of accuracy depending on the truncation parameter x.

In the following, we estimate the error we make by truncating the tail of de. In two dimensions the analytical error for the
truncated approximation dx

e is
Ex;Fðdx
e Þ ¼ 1�

Z x

�x
dx
e ðtÞdt

	 
Z s2

s1

qðsÞf ðs;0Þds� C1;F

Z x

�x
dx
e ðtÞtdt þ Oðe2Þ; ð94Þ
where C1;F ; qðsÞ, and f ðs; tÞ are all defined in Theorem 5.1. Note that the only difference in three dimensions are the constants
in front of the one-dimensional continuous moment conditions, see Theorem 5.2.

Since both dFD
e and dG

e are even functions we have that
Z �x

�1
deðtÞtdt þ

Z 1

x
deðtÞtdt ¼ 0: ð95Þ
From the definition of dx
e , Eq. (93) and since both dFD

e and dG
e satisfy the second continuous moment condition, i.e.
Z 1

�1
deðtÞtdt ¼

Z x

�x
deðtÞtdt þ

Z �x

�1
deðtÞtdt þ

Z 1

x
deðtÞtdt ¼ 0; ð96Þ
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the compactly supported delta function approximations also satisfy the second moment condition and hence the second
term in Eq. (94) is zero. To estimate the first term in Eq. (94) we need to estimate
Fig. 6.
toleran
was use
of wher
around
I1 ¼
Z 1

x
deðtÞf ðtÞdt ð97Þ
and
I2 ¼
Z x

�1
deðtÞf ðtÞdt: ð98Þ
For de ¼ dFD
e ðtÞ we have
jIFD
1 þ IFD

2 j ¼
2

1þ ex=e ð99Þ
and for de ¼ dG
e ðtÞ
jIG
1 þ IG

2 j ¼ 1� erf
px
3e

� �
; ð100Þ
where erf is the error function defined by
erfðxÞ ¼ 2ffiffiffiffi
p
p

Z x

0
e�t2

dt: ð101Þ
Thus, given a tolerance one can choose x=e such that jI1 þ I2j is below the given tolerance. Then, the analytical error is
Oðe2Þ down to the given tolerance.

The analysis of the numerical error in two and three dimensions presented in Section 5.2 is based on the superconver-
gence of the trapezoidal rule for periodic infinitely differentiable functions. By truncating the delta function approximations
presented in Section 4 we make an approximation error and a mismatch in the odd derivatives at 	x, i.e.
u2k�1ðxÞ – u2k�1ð�xÞ results in an error, see Theorem 5.3. However, if the function u is very small when truncated we ex-
pect the error in the trapezoidal rule to be small.

The total error is hence a sum of the analytical and the numerical error. We suggest here a way to select e and the half
width support x so that the delta function approximations with compact support are second-order accurate down to a spec-
ified error tolerance. We have seen in numerical experiments that choosing x and e according to this algorithm gives a total
error below the given tolerance. Given a tolerance C, appropriate values for e and x can be determined by the following
steps:

1. choose the smallest b such that ûðbÞ < C,
2. let e ¼ mh and take m ¼ b, then
3. for this e choose x such that
4. deðxÞ 6 C.

In the first step we want to get a one-dimensional delta function approximation dmh that satisfies two discrete moment
conditions down to the specified error tolerance C for all m P b. In the second step we choose the smallest such m and in the
third step we truncate the delta function within the same accuracy. In Figs. 6 and 7 we show the chosen m and x=h for
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e the delta function approximation can be truncated. For a tolerance of 10�6 the optimal m is, for example, around 1.25 and the half width support is
6h, while for a requested tolerance of 10�16 ;m � 2 and the half width support is around 14h.
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Fig. 7. The delta function dFD
mh is used. This figure should be compared with Fig. 6. In (a) we show the smallest m such that ûGðmÞ is below the given error
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of where the delta function approximation can be truncated. Here, for a tolerance of 10�6 the optimal m is somewhat smaller than 1. The half width support
of the delta function approximation is around 22h. Note that this is much larger than the half width support of the Gaussian approximation which is around
6h for the same tolerance, see Fig. 6.
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different error tolerances for dG
e and dFD

e , respectively. As an example, consider a tolerance of C ¼ 10�6. For this tolerance, the
optimal m for the Gaussian approximation is around 1.25 and the half width support x is around 6h. For the derivative of the
Fermi–Dirac function, the optimal m is around 0.9 and the half width support x ¼ 22h. The widths for the different functions
are in agreement with their decay behaviors, see Fig. 5. The Gaussian function decays much faster than the derivative of the
Fermi–Dirac function. The difference between the half width support x of the Gaussian approximation and the derivative of
the Fermi–Dirac function is larger for smaller error tolerances. In practical computations the Gaussian function is preferable.

6. Numerical results

In this section, we present three numerical examples using the distance function to extend the one-dimensional regular-
ized delta functions dFD

e ; d
G
e , and dTE

e to higher dimensions. We also show results when non-distance functions are used. Here,
we study the rate of convergence numerically by mesh refinement. In all the examples in this section we have integrands
with non-vanishing second derivatives and e ¼ mh. Since the approximations dTE

e ; d
FD
e , and dG

e all are of continuous moment
order 2, we expect to have an analytical error of OðhÞ2 in both two and three dimensions, according to Theorems 5.1 and 5.2.

Example 1. Consider the problem of computing the line integral
I ¼
Z

C
3x2 � y2ds ¼ 2p; ð102Þ
where C is a circle of radius 1 centered at the origin. This problem has previously been considered by Smereka, see Table 3 in
Ref. [7]. We cover the domain X ¼ fx ¼ ðx; yÞ : jxj 6 2; jyj 6 2g with a regular grid
xi ¼ �2þ ih; i 2 Z; ð103Þ
yj ¼ �2þ jh; j 2 Z; ð104Þ
and approximate the line integral I by
Ih ¼ h2
X
j2Z

X
i2Z

3x2
i � y2

j

� �
dFD

mhð/ðC; ðxi; yjÞÞÞ: ð105Þ
In Fig. 8 the relative error E ¼ jIh � Ij=I is shown for m ¼ 1, 2, and 2.5. In Fig. 8(a) the level set function /ðC;xÞ ¼ dðC; xÞ
and we see second-order convergence. The mass error in the case when m ¼ 1 is of order 10�7 (see Fig. 6) and cannot be seen
in the plot. We have also used the level set function /ðC;xÞ ¼ x2 þ y2 � 1 as in Ref. [7], which is not a signed distance func-
tion. The results are shown in Fig. 8(b) and indicate second-order convergence for m P 2. In the case of this non-distance
function the mass error increases as expected (see the Remark in Section 3). For m ¼ 1 the curve representing the error (cir-
cles in Fig. 8(b)) flattens out as h decreases since the total error is then dominated by the mass error.

Example 2. Here, we consider the computation of the surface integral:
I ¼
Z

C
ð4� 3x2 þ 2y2 � z2ÞdA ¼ 40p

3
; ð106Þ
where C is a sphere of radius 1 centered at the origin. In Refs. [7,9] the level set function uðC;xÞ ¼ x2 þ y2 þ z2 � 1 is used to
extend one-dimensional regularized delta functions to three dimensions. The relative error using dFD

2hðuðC;xÞÞ and dG
2hðuðC;xÞÞ
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is shown in Fig. 9(b), where second-order convergence can be seen. In Fig. 9(a) we use the distance function and observe that
the convergence is faster than second-order. Using spherical coordinates to parametrize the sphere C one can show that the
constant C2;F in the analytical error defined in Theorem 5.2 (Eq. (71)) with F ¼ 4� 3x2 þ 2y2 � z2 is zero. Further, since both
delta approximations used here satisfy all the odd moment conditions, the convergence is of fourth-order, in accordance
with Theorem 5.2. The results are similar when the center of the sphere is shifted. The relative error is smaller when
dG

2hðuðC;xÞÞ is used compared to dFD
2hðuðC;xÞÞ. This is also in accordance with Theorem 5.2 since the width x of dG

2h is much
smaller than the width of dFD

2h (see Section 5.3). Consequently, the constant in the analytical error is smaller.
6.1. Partial differential equations

We consider now the differential equation,
Lu ¼ dðC; g;xÞ; x 2 X � Rd; Bu ¼ rðxÞ; x 2 @X: ð107Þ
The solution can be written as
uðxÞ ¼
Z

X
Gðx; yÞdðC; g; yÞdy þ RðxÞ; ð108Þ
where Gðx; yÞ is Green’s function and RðxÞ represents the contribution from the boundary conditions. In the case of homo-
geneous boundary conditions RðxÞ ¼ 0. In the computations the delta function is approximated by a regularized delta func-
tion deðC; g;xÞ with support in the interval ½�x;x�. Assume that Green’s function Gðx; yÞ is regular away from x ¼ y for all
y 2 C. Then, for all xj for which jxj � xj > x for all x 2 C,
juj � uðxjÞj 6 Chminðp;qÞ
; ð109Þ
where q is the order of accuracy of the delta function approximation and p is the order of accuracy for the discretization of
the differential operator L. For a proof see Ref. [3].

Example 3. Let us consider the Poisson equation in R2
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�Du ¼ dðC;xÞ; x 2 X � R2 uðxÞ ¼ vðxÞ; x 2 @X ð110Þ
where X ¼ fx ¼ ðxð1Þ; xð2ÞÞ : jxð1Þj 6 1; jxð2Þj 6 1g, C ¼ fx : jx� x̂j ¼ 1=2g, and vðxÞ ¼ 1� logð2jx� x̂jÞ=2. The solution of this
equation is
uðxÞ ¼
1 jx� x̂j 6 1=2;
1� logð2jx� x̂jÞ=2; jx� x̂j > 1=2;

�
ð111Þ
see Fig. 10. We introduce a uniform grid, with step size h ¼ 2=N in both xð1Þ and xð2Þ direction. The delta function approxi-
mations dFD

e , dG
e , dTE

e , and dC
e are tested for e ¼ mh. We use a fourth-order stencil D4

2 to approximate the differential operator.
See [3] for the definition of D4

2. The error,
ku� uhk; ð112Þ

is measured in both the maximum norm and the L1-norm. Here, u is the exact solution given in Eq. (111) and uh is the
numerical solution. In Figs. 11 and 12 we show the error when the circle C is centered in x̂ ¼ ð0;0Þ. In Fig. 11 the maximum
norm measured over the whole domain X when dFD

mh and dG
mh are used is shown for m ¼ 1, m ¼ 2, and m ¼ 3. We have first-

order convergence since we measured the error close to C. To measure the error away from C, we introduce the sub-domain
eX ¼ fx : x 2 X; jdðC; xÞj > gg: ð113Þ
Since dFD
e ; d

G
e , and dTE

e are all second-order accurate we expect from Eq. (109) to see second-order convergence when the
error is measured away from C. We recall that analytical results suggested that g P x is needed to obtain the convergence
order of the delta function approximation, see Eq. (109). However, our numerical simulations indicate that g ¼ e is sufficient.
In Fig. 12 the maximum norm and the L1-norm of the error is shown for dFD

2h ; d
G
2h; d

TE
2h, and dC

2h. For the regularized delta func-
tion dC

2h of order h4 in one dimension there is no convergence, neither in the maximum norm nor in the L1-norm. Note that
the error using dG

2h is almost identical to the error we obtain using dTE
2h.

We obtained similar results for other values of x̂ away from the boundary of the computational domain.

7. Conclusions

We have introduced delta function approximations that are convenient to use for delta functions with support on a curve
in 2D or a surface in 3D, represented implicitly by a level set. The framework is based on the ‘‘old” method with a one-dimen-
sional delta function approximation extended to higher dimensions by a distance function.
Fig. 10. The exact solution uðxÞ given by Eq. (111) for x̂ ¼ 0.
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This method was in [3] shown to be inconsistent when different compact one-dimensional delta function approxima-
tions were used. In this paper, we have shown that this can be understood from the fact that these compact functions
cannot both satisfy the discrete mass condition for all shifts in the grid and for a range of dilations of the support. This
is however possible if one is basing the approximation on functions that have compact support instead in Fourier space,
or in practice, that are smaller than some tolerance outside a given interval. For such functions, we have proven in both
two and three dimensions that the error can be bounded by the sum of the analytical and the numerical error. The ana-
lytical error is determined by the moment order of the one-dimensional approximation and the numerical error tends to
zero faster than any power of h in the limit as h! 0, due to the superconvergence of the trapezoidal rule. All the three
functions we have discussed have analytical errors of Oðh2Þ. When we are to compute an integral over the delta function
itself, yielding length of curve or surface area, or over the delta function multiplied by a linear function, there is no ana-
lytical error for any of the approximations that we have introduced, since the approximate delta functions are of moment
order 2.

A function that is compact or decays rapidly in Fourier space will not produce delta function approximations with com-
pact support. This means that in practice, we need to truncate these approximations. For the Gaussian function dG

e , that was
introduced in Section 4.2, the accuracy of this procedure was discussed in conjunction with Fig. 6 in Section 5.3. It was con-
cluded that to achieve an error around 10�6 we need e P mh;m ¼ 1:25. For m ¼ 1:25 the Gaussian function can be truncated
so that the half width support becomes around 6h. To get an error around 10�16, we need m ¼ 2 and a half width support of
around 14h. When we have non-vanishing second derivatives of the function F, see (57), there will be an analytical error of
Oðh2Þ which will dominate the numerical error, and for moderate grid sizes, there is no point in using a wider support than
6h.

In this paper, we also discussed the function dTE
e , as defined in (44). This function yields very similar results to the Gauss-

ian, but is more computationally expensive, since the function is not given explicitly but must be computed from its Fourier
transform. We found that, compared to the other approximations, the approximation dFD

e , has a slower decay in real space
and hence a larger support. We therefore recommend to use the Gaussian approximation.
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Appendix A. We start by stating a definition and a theorem from Ref. [19] that will be used in the study of the analytical
error in three dimensions.
Definition 8.1. Let k > 0. A k-manifold in Rn of class Cr is a subspace M of Rn having the following property: For each p 2 M,
there is an open set V of M containing p, a set U that is open in either Rk or the upper half-space in Rk and a continuous map
P : U ! V carrying U onto V in one-to-one fashion, such that:
1. P is of class Cr .
2. P�1 : V ! U is continuous.
3. DPðxÞ, the Jacobian matrix of P, has rank k for each x 2 U.

The map P is called a coordinate patch on M about p.

Theorem 8.1. Let M be a compact k-manifold in Rn, of class Cr. Let f : M ! R be a continuous function. Suppose that Pi : Ai ! Mi,
for i ¼ 1; . . . ;N is a coordinate patch on M, such that Ai is open in Rk and M is the disjoint union of the open sets M1; . . . ;MN of M
and a set K of measure zero in M. Then
Z

M
fdV ¼

XN

i¼1

Z
Ai

ðf � PiÞVðDPiÞ: ð114Þ
This theorem states that
R

M fdV can be evaluated by separately evaluating the integral over local parametrized parts of the
manifold and then summing up all the contributions. A proof of the theorem can be found in Ref. [19]. It is assumed that the
support of the integrand f lies in M.

Proof of Theorem 5.2. In three dimensions we cannot expect to have a global parametrization but a local exist. By the
assumption C is a 2-manifold that can be covered by an union of disjoint open sets V1; . . . ;Vl and a set K of measure zero in C.
It has been proven that such sets can be constructed using polygonal charts sets, see [20]. Further, we have assumed that a
coordinate patch Pj ¼ ðxðr; sÞ; yðr; sÞ; zðr; sÞÞ : ðr1; r2Þ � ðs1; s2Þ ! Vj of class C2 on C exists.

The normal of C at Vj is defined as n ¼ ðn1;n2;n3Þ ¼ 1
qðr;sÞ ðP

j
r � Pj

sÞ, where qðr; sÞ ¼ kPj
r � Pj

sk – 0.

The integration is over Xx. This is a compact 3-manifold of class C2. The integrand deF : Xx ! R, is a continuous function.
The domain Xx can be covered by the disjoint union of open sets M1; . . . ;Ml and a set of measure zero in Xx. The open set Mj

can be given by the following parametrization
Mj ¼ fðx; y; zÞ : x ¼ Xjðr; s; tÞ; y ¼ Yjðr; s; tÞ; z ¼ Zjðr; s; tÞ; r 2 ðr1; r2Þ; s 2 ðs1; s2Þ; t 2 ½�x;x�g; ð115Þ
where Xjðr; s; tÞ ¼ xðr; sÞ þ tn1ðr; sÞ;Yjðr; s; tÞ ¼ yðr; sÞ þ tn2ðr; sÞ, and Zjðr; s; tÞ ¼ zðr; sÞ þ tn3ðr; sÞ. Let
Aj ¼ ðr1; r2Þ � ðs1; s2Þ � ½�x;x�, and
bj ¼ ðXjðr; s; tÞ; Yjðr; s; tÞ; Zjðr; s; tÞÞ: ð116Þ
Then it follows from Theorem 8.1 that:
IXx ðdeFÞ ¼
Xl

j¼1

IAj
¼
Xl

j¼1

Z
Aj

ðde � bjÞðF � bjÞVðDbjÞ; ð117Þ
where VðDbjÞ ¼ jdetðJðr; s; tÞÞjdtdsdr. The Jacobian determinant for this transformation from ðx; y; zÞ to ðr; s; tÞ is
detðJðr; s; tÞÞ ¼ ðXj
r; Y

j
r ; Z

j
rÞ � ðX

j
s;Y

j
s; Z

j
sÞ 
 ðX

j
t ;Y

j
t ; Z

j
tÞ ¼ ðP

j
r � Pj

s þ tðnr � Pj
s þ Pj

r � nsÞ þ t2ðnr � nsÞÞ 
 n

¼ kPj
r � Pj

skð1� tðj1 þ j2Þ þ t2j1j2Þ ¼ qðr; sÞð1� tj1ðr; sÞÞð1� tj2ðr; sÞÞ: ð118Þ
Here we have used that the coordinate patch, Pj is C2 hence Pj
rs ¼ Pj

sr . This transformation is non-singular because of the
assumption in Eq. (68)

Note that dðC;xÞ ¼ t and denote
f ðr; s; tÞ ¼ FðXjðr; s; tÞ; Yjðr; s; tÞ; Zjðr; s; tÞÞ: ð119Þ
We have
IAj
¼
Z

Aj

ðde � bjÞðF � bjÞVðDbjÞ ¼
Z r2

r1

Z s2

s1

Z x

�x
deðtÞf ðr; s; tÞqðr; sÞð1� tj1ðr; sÞÞð1� tj2ðr; sÞÞdtdsdr: ð120Þ
The assumption that FðxÞ is a smooth function yields that f ðr; s; tÞ has N þ 1 bounded derivatives with respect to t. Since
t 2 ½�x;x� we can for x small Taylor expand f ðr; s; tÞ around ðr; s;0Þ
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f ðr; s; tÞ ¼
XN

i¼0

ti

i!
fitðr; s;0Þ þ OðtNþ1Þ: ð121Þ
The index i in fit denotes the number of partial derivatives with respect to t. Define the moments of the function deðtÞ as
MaðdeðtÞÞ ¼
Z x

�x
deðtÞtadt: ð122Þ
Replacing f ðr; s; tÞ in Eq. (120) with its Taylor expansion we obtain
IAj
¼ M0ðdeðtÞÞ

Z r2

r1

Z s2

s1

f ðr; s; 0Þqðr; sÞdsdr

þM1ðdeðtÞÞ
Z r2

r1

Z s2

s1

ftðr; s;0Þqðr; sÞdsdr �
Z r2

r1

Z s2

s1

f ðr; s; 0Þqðr; sÞðj1ðr; sÞ þ j2ðr; sÞÞdsdr
	 


þ
XN

a¼2

Cj
a;FMaðdeðtÞÞ þ OðMNþ1ðdeðtÞÞÞ; ð123Þ
where the constant Cj
a;F is given in Eq. (71).

By the change of variable t=e ¼ n and since x ¼ pe we get
MaðdeðtÞÞ ¼
Z x

�x

1
e
uðt=eÞtadt ¼ ea

Z p

�p
uðnÞnadt: ð124Þ
By summing up contributions from all Aj we obtain the theorem. h
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